雷火电竞网站
 
雷火电竞网站 雷火电竞体育 新闻中心 产品中心 雷火平台 网站地图
语音识别芯片的基本原理是什么?为什么可以识别语音?
时间:2022-06-28 10:49:50来源:雷火电竞体育 作者:雷火平台

  语音识别芯片也叫语音识别IC,与传统的语音芯片相比,语音识别芯片最大的特点就是能够语音识别,它能让机器听懂人类的语音,并且可以根据命令执行各种动作,如眨眼睛、动嘴巴(智能娃娃)。除此之外,语音识别芯片还具有高品质、高压缩率录音放音功能,可实现人机对话。

  嵌入式语音识别系统都采用了模式匹配的原理。录入的语音信号首先经过预处理,包括语音信号的采样、反混叠滤波、语音增强,接下来是特征提取,用以从语音信号波形中提取一组或几组能够描述语音信号特征的参数。特征提取之后的数据一般分为两个步骤,第一步是系统“学习”或“训练”阶段,这一阶段的任务是构建参考模式库,词表中每个词对应一个参考模式,它由这个词重复发音多遍,再经特征提取和某种训练中得到。第二是“识别”或“测试”阶段,按照一定的准则求取待测语音特征参数和语音信息与模式库中相应模板之间的失真测度,最匹配的就是识别结果。

  而NRK330X系列语音识别芯片是九芯电子推出的一款32位高性能、低成本语音识别IC,其具有识别精准、远场降噪等优势,最多可支持不超过100条离线指令,现已广泛用于智能家电、智能卫浴、智能照明、智能机电、智能家居、智能玩具等领域。

  语音识别芯片是人工智能和机器学习应用的一个重要方向,并发展成为一个具有阔前景的新兴高技术产业。现在,越来越多的语音识别技术被带入到人们的工作生活中,影响若每一个人。 在某些领域如信息处理、教育与商务、工业控制等方面,语音识别已经显露出巨大的优势。

  (1)语音信号预处理与特征提取;(2)声学模型与模式匹配;(3)语言模型与语言处理

  选择识别单元是语音识别研究的第一步。语音识别单元有单词(句)、音节和音素三种,具体选择哪一种,由具体的研究任务决定。

  单词(句)单元广泛应用于中小词汇语音识别系统,但不适合大词汇系统,原因在于模型库太庞大,训练模型任务繁重,模型匹配算法复杂,难以满足实时性要求。

  音节单元多见于汉语语音识别,主要因为汉语是单音节结构的语言,而英语是多音节,并且汉语虽然有大约1300个音节,但若不考虑声调,约有408个无调音节,数量相对较少。因此,对于中、大词汇量汉语语音识别系统来说,以音节为识别单元基本是可行的。

  音素单元以前多见于英语语音识别的研究中,但目前中、大词汇量汉语语音识别系统也在越来越多地采用。原因在于汉语音节仅由声母(包括零声母有22个)和韵母(共有28个)构成,且声韵母声学特性相差很大。实际应用中常把声母依后续韵母的不同而构成细化声母,这样虽然增加了模型数目,但提高了易混淆音节的区分能力。由于协同发音的影响,音素单元不稳定,所以如何获得稳定的音素单元,还有待研究。 语音识别一个根本的问题是合理的选用特征。特征参数提取的目的是对语音信号进行分析处理,去掉与语音识别无关的冗余信息,获得影响语音识别的重要信息,同时对语音信号进行压缩。

  在实际应用中,语音信号的压缩率介于10-100之间。语音信号包含了大量各种不同的信息,提取哪些信息,用哪种方式提取,需要综合考虑各方面的因素,如成本,性能,响应时间,计算量等。非特定人语音识别系统一般侧重提取反映语义的特征参数,尽量去除说话人的个人信息;而特定人语音识别系统则希望在提取反映语义的特征参数的同时,尽量也包含说话人的个人信息。

  线性预测(LP)分析技术是目前应用广泛的特征参数提取技术,许多成功的应用系统都采用基于LP技术提取的倒谱参数。但线性预测模型是纯数学模型,没有考虑人类听觉系统对语音的处理特点。

  Mel参数和基于感知线性预测(PLP)分析提取的感知线性预测导谱,在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的一些研究成果。实验证明,采用这种技术,语音识别系统的性能有一定提高。从目前使用的情况来看,梅尔刻度式倒频谱参数已逐渐取代原本常用的线性预测编码导出的倒频谱参数,原因是它考虑了人类发声与接收声音的特性,具有更好的鲁棒性(Robustness)。

  也有研究者尝试把小波分析技术应用于特征提取,但目前性能难以与上述技术相比,有待进一步研究。

  声学模型通常是将获取的语音特征使用训练算法进行训练后产生。在识别时将输入的语音特征同声学模型(模式)进行匹配与比较,得到最佳的识别结果。

  声学模型是识别系统的底层模型,并且是语音识别系统中最关键的一部分。声学模型的目的是提供一种有效的方法计算语音的特征矢量序列和每个发音模板之间的距离。声学模型的设计和语言发音特点密切相关。声学模型单元大小(字发音模型、半音节模型或音素模型)对语音训练数据量大小、系统识别率,以及灵活性有较大的影响。必须根据不同语言的特点、识别系统词汇量的大小决定识别单元的大小。

  汉语按音素的发音特征分类分为辅音、单元音、复元音、复鼻尾音四种,按音节结构分类为声母和韵母。并且由音素构成声母或韵母。有时,将含有声调的韵母称为调母。由单个调母或由声母与调母拼音成为音节。汉语的一个音节就是汉语一个字的音,即音节字。由音节字构成词,最后再由词构成句子。

  汉语声母共有22个,其中包括零声母,韵母共有38个。按音素分类,汉语辅音共有22个,单元音13个,复元音13个,复鼻尾音16个。

  目前常用的声学模型基元为声韵母、音节或词,根据实现目的不同来选取不同的基元。汉语加上语气词共有412个音节,包括轻音字,共有1282个有调音节字,所以当在小词汇表孤立词语音识别时常选用词作为基元,在大词汇表语音识别时常采用音节或声韵母建模,而在连续语音识别时,由于协同发音的影响,常采用声韵母建模。

  基于统计的语音识别模型常用的就是HMM模型λ(N,M,π,A,B),涉及到HMM模型的相关理论包括模型的结构选取、模型的初始化、模型参数的重估以及相应的识别算法等。

  语言模型包括由识别语音命令构成的语法网络或由统计方法构成的语言模型,语言处理可以进行语法、语义分析。

  语言模型对中、大词汇量的语音识别系统特别重要。当分类发生错误时可以根据语言学模型、语法结构、语义学进行判断纠正,特别是一些同音字则必须通过上下文结构才能确定词义。语言学理论包括语义结构、语法规则、语言的数学描述模型等有关方面。

  目前比较成功的语言模型通常是采用统计语法的语言模型与基于规则语法结构命令语言模型。语法结构可以限定不同词之间的相互连接关系,减少了识别系统的搜索空间,这有利于提高系统的识别。返回搜狐,查看更多

上一篇:文字转语音真人发声软件可在线把文字变成声音的app(附带教程下一篇:人脸识别常见的三种技术
版权所有:雷火电竞网站|雷火电竞体育平台    公安备41030502000174  Copy Right @ 雷火电竞网站|雷火电竞体育平台 INDUSTRY CO.LTD
地址:河南省洛阳市中州西路173号  XML地图  技术支持:雷火电竞体育